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ABSTRACT
Voltage instability occurs when a power system is unable
to meet reactive power demand at one or more buses.
Voltage instability events have caused several major out-
ages and promise to become more frequent due to in-
creasing energy demand. The future smart grid may
help to ensure voltage stability by enabling rapid detec-
tion of possible voltage instability and implementation
of corrective action. These corrective actions will only
be effective in restoring stability if they are chosen in a
timely, scalable manner. Current techniques for select-
ing control actions, however, rely on exhaustive search,
and hence may choose an inefficient control strategy. In
this paper, we propose a submodular optimization ap-
proach to designing a control strategy to prevent volt-
age instability at one or more buses. Our key insight is
that the deviation from the desired voltage is a super-
modular function of the set of reactive power injections
that are employed, leading to computationally efficient
control algorithms with provable optimality guarantees.
Furthermore, we show that the optimality bound of our
approach can be improved from 1/3 to 1/2 when the
power system operates under heavy loading conditions.
We demonstrate our framework through extensive sim-
ulation study on the IEEE 30 bus test case.

1. INTRODUCTION
Power systems are expected to operate closer to their

stability limits in the coming decades, due to a com-

∗This work was supported by NSF grant CNS-1544173.

bination of increased demand for electricity and unpre-
dictable supply from renewable energy sources. A signif-
icant challenge in power system stability will be main-
taining steady voltages at system buses in the presence
of disturbances, such as equipment failures and changes
in generation or load [9]. Inability to maintain system
voltages (voltage instability) has been responsible for
blackouts in the United States, Sweden, Japan, Belgium
and France [8].
Voltage instability is caused by an inability of the

power system to meet reactive power demand, and is
typically corrected by injecting reactive power at load
buses through mechanisms such as capacitor switching
or transformer tap changing [9]. These corrective ac-
tions are traditionally performed locally, in order to
limit the coordination required between geographic re-
gions and utility operators [15]. A purely local ap-
proach, however, may be insufficient to meet reactive
power demand and does not take the interactions be-
tween neighboring buses into account, limiting its effec-
tiveness against major disturbances that affect multiple
buses simultaneously.
The enhanced monitoring and communication capa-

bilities of the future smart grid could potentially enable
centralized or hierarchical voltage control. One such
architecture was proposed in [14], and is currently be-
ing implemented in Southern California. Under this
approach, the current system state (bus voltage mag-
nitudes and phases) is measured at each time instant
using Phasor Measurement Units, and is used to evalu-
ate the effectiveness of distributed voltage control and,
when necessary, inform the design of a coordinated, cen-
tralized response.
A crucial step in any coordinated response is select-

ing a set of control actions at each bus based on the
gathered state information. Since the set of actions at
each bus is inherently discrete (e.g., deciding whether to
switch on a capacitor bank), designing a control action
at each time step is a discrete subset selection problem.
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At present, such actions are chosen via enumeration and
evaluation of all possible combinations of control actions
at multiple buses [14]. This approach does not scale to
large power systems, and may result in a costly, subop-
timal response or fail to identify a set of control actions
in time to prevent voltage collapse. A computationally
efficient optimization approach that exploits underly-
ing structure of the voltage regulation problem to select
provably optimal control actions would enable a timely
and effective coordinated response to voltage instabil-
ity. At present, however, there is no such optimization
approach available in the existing literature.
This paper presents a submodular optimization ap-

proach to voltage control in power systems that is devel-
oped based on a standard model of the voltage-reactive
power dynamics obtained from the Jacobian of the power
flow equation. Submodularity is a diminishing returns
property of set functions that enables the development
of efficient approximation algorithms. Our fundamen-
tal insight is that the metrics typically used to evaluate
the effectiveness of a voltage control strategy, such as
the deviation from the desired voltage and the switch-
ing cost, have an inherent submodular structure. We
make the following specific contributions:

∙ We formulate the problem of selecting a set of VAR
devices, such as transformer tap changes and capac-
itor banks, in order to minimize the voltage control
cost, defined as the deviation of the voltage from
its desired value plus the total switching cost.

∙ We prove that the VAR device selection problem
is equivalent to submodular maximization with a
matroid basis constraint. Our approach exploits
the physical intuition that, as additional reactive
power is injected into the system, the incremental
change in the deviation from the desired voltage
is decreasing, and becomes negative as the level of
reactive power exceeds the required amount.

∙ We propose polynomial-time algorithms for com-
puting a voltage control strategy. The algorithms
achieve an optimality bound of 1/3 under basic as-
sumptions motivated by the physical properties of
power systems. In the special case of power systems
under heavy loading, we prove that a randomized
greedy algorithm achieves an improved optimality
bound of 1/2.

∙ We evaluate our approach through a numerical study
on the IEEE 30 bus test case. We find that our ap-
proach results in the same improvement in voltage
stability and switching cost as exhaustive search
over the possible control actions, but with signifi-
cantly less computational overhead.

The paper is organized as follows. Section 2 reviews
the related work. Section 3 presents the power sys-
tem model and background on submodularity. Section

4 presents the problem formulation and approximation
algorithms based on submodular optimization. Section
5 presents simulation results. Section 6 concludes the
paper.

2. RELATED WORK
Voltage stability in power grid has been studied ex-

tensively in the existing literature [5, 7, 11, 14, 15]. A
theoretical model for voltage collapse was developed in
[5] in which the operating point of voltage collapse was
identified as the point of bifurcation in power system
dynamics. Traditional approach for mitigating voltage
instability has mainly been preventive actions based on
contingency ranking [7]. However, with the recent ad-
vances in real-time monitoring capability using PMUs,
development of corrective actions for mitigating voltage
instability is becoming an active area of research.
Control-theoretic approaches for voltage regulation have

been proposed in [15, 11]. In [15], a sufficient condition
for regulating voltage in a distributed manner with lim-
ited communication between busses has been derived.
Similarly, a distributed control law that guarantees volt-
age stability has been derived in [11] by varying the reac-
tive power injection at each bus using distributed energy
resources (DER). These works, however, assume every
bus is capable of dynamically varying reactive power in-
jection and did not take into account the cost associated
with reactive power injection.
An optimization problem for regulating voltage while

minimizing the economic and operation costs of control
in large power systems was studied in [14] where the
reactive power control was exerted through switching of
VAR devices. This current approach, however, requires
enumerating all possible configurations of VAR devices
in every bus, limiting its scalability for large power grids.
Submodular optimization techniques for control of net-

worked systems have been proposed in recent years [4,
13, 2, 3]. These techniques, however, focus on opti-
mizing performance parameters, such as robustness to
noise, convergence error, and controllability, of generic
linear systems. At present, submodularity has not been
explored in the context of power system stability and
control.

3. SYSTEM MODEL AND PRELIMINARIES
In this section, we present the power system model

and introduce notations that will be used throughout
the paper. We also give background on submodularity.

3.1 Power System Model
We consider a power grid with 𝑛 buses. We say that

bus 𝑘 is a neighbor of bus 𝑖 if there is a transmission
line between buses 𝑖 and 𝑘. The set of neighboring



buses of bus 𝑖 is denoted as 𝑁(𝑖). We denote the ad-
mittance of the transmission line between bus 𝑖 and 𝑘
as 𝑦𝑖𝑘 = 𝑔𝑖𝑘 − 𝑗𝑏𝑖𝑘 where 𝑔𝑖𝑘 and 𝑏𝑖𝑘 denote the con-
ductance and susceptance respectively. We assume that
active power loss over the transmission lines are negli-
gible, i.e., 𝑔𝑖𝑘 ≈ 0 for all transmission lines. We also
assume that a subset of buses, Ω, are capable of switch-
ing in capacitor and reactor banks. For bus 𝑖 ∈ Ω, the
change in reactive power injection induced by switching
in capacitor or reactor back is denoted as Δ𝑄𝑖.
We denote the magnitude and the phase angle of com-

plex voltage at bus 𝑖 as 𝑉𝑖 and 𝜃𝑖. From power flow
analysis [9], the reactive power flow between bus 𝑖 and
𝑘 is given as

𝑄𝑖𝑘 = 𝑉 2
𝑖 𝑏𝑖𝑘 − 𝑉𝑖𝑉𝑘𝑏𝑖𝑘 cos 𝜃𝑖𝑘 (1)

where 𝜃𝑖𝑘 = 𝜃𝑖 − 𝜃𝑘. Then, the reactive power injection
at bus 𝑖, denoted as 𝑄𝑖 is given as

𝑄𝑖 =
∑

𝑘∈𝑁(𝑖)

𝑄𝑖𝑗 =

(∑
𝑘

𝑉 2
𝑖 𝑏𝑖𝑘 − 𝑉𝑖𝑉𝑘𝑏𝑖𝑘 cos 𝜃𝑖𝑘

)
(2)

by the conservation of power. We assume that the
change in reactive power flow is mainly induced by the
changes in terminal voltage magnitudes and the change
induced by the phase angle is negligible. This assump-
tion is consistent with the existing literature [14]. Under
this assumption, by linearizing 𝑄𝑖𝑘 around the current
operating point, we obtain

Δ𝑄𝑖𝑘 = (2𝑉𝑖𝑏𝑖𝑘 − 𝑉𝑘𝑏𝑖𝑘 cos 𝜃𝑖𝑘)Δ𝑉𝑖 − 𝑉𝑖𝑏𝑖𝑘 cos 𝜃𝑖𝑘Δ𝑉𝑘

where Δ𝑉𝑖 is the change in voltage magnitude at bus
𝑖. From (2), the total change in injection of reactive
power at bus 𝑖 is given as Δ𝑄𝑖 =

∑
𝑘∈𝑁(𝑖)Δ𝑄𝑖𝑘. Let

Δq = [Δ𝑄1, . . . ,Δ𝑄𝑛]
𝑇 be the vector of changes in re-

active power injection, and Δv = [Δ𝑉1, . . . ,Δ𝑉𝑛]
𝑇 be

the vector of changes in voltage magnitudes. Then, Δq
can be written as

Δq = 𝐽Δv (3)

where the diagonal entries of matrix 𝐽 are given as

𝐽𝑖𝑖 =
∑

𝑘∈𝑁(𝑖)

(2𝑉𝑖𝑏𝑖𝑘 − 𝑉𝑘𝑏𝑖𝑘 cos 𝜃𝑖𝑘) (4)

and the off-diagonal entries are given as

𝐽𝑖𝑘 =

{ −𝑉𝑖𝑏𝑖𝑘 cos 𝜃𝑖𝑘, if 𝑘 ∈ 𝑁(𝑖)
0, else

We assume that the matrix 𝐽 is invertible under normal
operating condition. This assumption is consistent with
existing literatures [5, 12] where the operating point at
which the matrix 𝐽 becomes singular was identified as
the point of voltage collapse since no change in reac-
tive power injection could stabilize the change in volt-
age magnitudes. Under this assumption, the effect of

changes in reactive power injections on the voltage mag-
nitudes can be written as

Δv = 𝐽−1Δq. (5)

3.2 Background on Submodularity
Let 𝑉 be a finite set, and let 2𝑉 denote the set of all

subsets of 𝑉 . A function 𝑓 : 2𝑉 → ℝ is submodular if,
for any sets 𝑆 and 𝑇 ,

𝑓(𝑆) + 𝑓(𝑇 ) ≥ 𝑓(𝑆 ∪ 𝑇 ) + 𝑓(𝑆 ∩ 𝑇 ). (6)

Equivalently [6], a function is submodular if, for any
sets 𝑆 and 𝑇 with 𝑆 ⊆ 𝑇 and any 𝑣 /∈ 𝑇 ,

𝑓(𝑆 ∪ {𝑣})− 𝑓(𝑆) ≥ 𝑓(𝑇 ∪ {𝑣})− 𝑓(𝑇 ). (7)

Eq. (7) can be interpreted as a diminishing returns
property, wherein the incremental benefit of adding an
element to a set 𝑆 decreases as more elements are added
to 𝑆. This is analogous to concavity of continuous func-
tions. It can be shown that a nonnegative weighted sum
of submodular functions is supermodular. A function
𝑓 : 2𝑉 → ℝ is supermodular if −𝑓 is submodular.
As a notation, let ∣𝑆∣ denote the cardinality of a set

𝑆. A matroid is defined as follows.

Definition 1. Let 𝑉 be a finite set, and let ℐ be a
collection of subsets of 𝑉 . The pair ℳ = (𝑉, ℐ) is a
matroid if the following three conditions hold: (i) ∅ ∈ ℐ,
(ii) If 𝐵 ∈ ℐ, then 𝐴 ∈ ℐ for all 𝐴 ⊆ 𝐵, and (iii) If
𝐴,𝐵 ∈ ℐ and ∣𝐴∣ < ∣𝐵∣, then there exists 𝑣 ∈ 𝐵 ∖ 𝐴
such that (𝐴 ∪ {𝑣}) ∈ ℐ.
The collection ℐ is referred to as the set of independent

sets of the matroid ℳ. A maximal independent set is
a basis. It can be shown that all bases of a matroid
have the same cardinality. The following lemma gives a
property of submodular functions over matroid bases.

Lemma 1 ([10]). Let ℳ = (𝑉, ℐ) be a matroid,
and let 𝑓 : 2𝑉 → ℝ be a submodular function defined
on 𝑉 . Define 𝑆 to be a matroid basis such that, for all
𝑢 and 𝑣 with 𝑢 ∈ 𝑆, 𝑣 /∈ 𝑆, and (𝑆 ∖ {𝑢} ∪ {𝑣}) ∈ ℐ),
(1 + 𝜖)𝑓(𝑆) ≥ 𝑓(𝑆 ∖ {𝑢} ∪ {𝑣}). Then for any basis 𝐶
ofℳ,

2(1 + 𝜖)𝑓(𝑆) ≥ 𝑓(𝑆 ∪ 𝐶) + 𝑓(𝑆 ∩ 𝐶). (8)

A sub-class of matroids is defined by the following
lemma.

Lemma 2. Let 𝑉 denote a finite set, and let 𝑉1, . . . , 𝑉𝑚

be a partition of 𝑉 , i.e., a collection of sets such that
𝑉1 ∪ ⋅ ⋅ ⋅ ∪ 𝑉𝑚 = 𝑉 and 𝑉𝑖 ∩ 𝑉𝑗 = ∅ for 𝑖 ∕= 𝑗. Let
𝑑1, . . . , 𝑑𝑚 be a collection of nonnegative integers. De-
fine a set ℐ by 𝐴 ∈ ℐ iff ∣𝐴∩𝑉𝑖∣ ≤ 𝑑𝑖 for all 𝑖 = 1, . . . ,𝑚.
Thenℳ = (𝑉, ℐ) is a matroid.

A matroid defined as in Lemma 2 is a partition ma-
troid.



4. PROPOSED VOLTAGE CONTROL
FRAMEWORK

This section formulates the problem of selecting a set
of buses to inject reactive power into the power system,
in order to minimize the deviation from the desired volt-
age and switching cost. We first describe the formula-
tion, followed by an equivalent submodular optimiza-
tion problem. Based on the submodularity property, we
present a polynomial-time algorithm with provable op-
timality guarantees. We then describe algorithms that
provide improved optimality bounds under the case of
heavy loading.

4.1 Problem Formulation
A centralized voltage controller will monitor and con-

trol the voltages continuously for all buses. When a
voltage deviation occurs, the controller selects a subset
of buses, 𝑆 ⊆ Ω, to switch their capacitor banks from
off to on, or from on to off. Activating a capacitor or
reactor bank that is currently turned off incurs a cost 𝑐𝑖,
while the cost of deactivating a device that is currently
on is denoted 𝑏𝑖. The set of devices that are currently
turned on is denoted 𝑂, while the set of devices that are
turned off is denoted 𝐹 .
The goal of the controller is to choose the best switch-

ing action to minimize the resulting voltage deviation
with minimal total switching cost. These costs can be
captured by the metric

𝑓(𝑆) =
∑

𝑖∈𝑆∩𝐹

𝑐𝑖 +
∑

𝑖∈𝑆∩𝑂

𝑏𝑖

+ 𝜆

𝑛∑
𝑘=1

ℎ(𝑣𝑘 + (Δ𝑉 )𝑘 − (𝑣𝑟𝑒𝑓 )𝑘)

where the first term gives the total switching cost, the
second term measures the voltage deviation after switch-
ing with a trade-off factor 𝜆, and ℎ is an increasing con-
vex function.
Substituting Δ𝑣 with equation (5), we get

𝑓(𝑆) =
∑

𝑖∈𝑆∩𝐹

𝑐𝑖+
∑

𝑖∈𝑆∩𝑂

𝑏𝑖+𝜆

𝑛∑
𝑘=1

ℎ

(∑
𝑖∈𝑆

𝜔𝑘𝑖(Δ𝑄𝑖)− 𝑉 ∗
𝑘

)

(9)
where 𝜔𝑘𝑖 = (𝐽−1)𝑘𝑖 and 𝑉 ∗

𝑘 is the 𝑘th entry of (v𝑟𝑒𝑓 −
v).
The problem of selecting an optimal control action 𝑆

can then be formulated as min {𝑓(𝑆) : 𝑆 ⊆ Ω}. Equiv-
alently, the problem can be reformulated as selecting a
set of capacitors/reactors, denoted 𝑂′, that should be
active (including devices that are switched from off to
on, as well as devices that remain on), so that 𝑂′ =

(𝑆 ∩ 𝐹 ) ∪ (𝑂 ∖ 𝑆). Define the metric

𝑓(𝑂′) =
∑

𝑖∈𝑂′∖𝑂
𝑐𝑖+

∑
𝑖∈𝑂∖𝑂′

𝑏𝑖+𝜆
𝑛∑

𝑘=1

ℎ

(∑
𝑖∈𝑂′

𝜔𝑘𝑖∣Δ𝑄𝑖∣ − 𝑉 ∗
𝑘

)
,

(10)

where 𝑉 ∗
𝑘 = −

(
𝑣𝑘 − (𝑣𝑟𝑒𝑓 )𝑘 −

∑
𝑗∈𝑂 𝜔𝑘𝑗 ∣Δ𝑄𝑗 ∣

)
. The

equivalence between these metrics is established by the
following lemma.

Lemma 3. If 𝑂′ = (𝑆 ∩ 𝐹 ) ∪ (𝑂 ∖ 𝑆), then 𝑓(𝑆) =
𝑓(𝑂′).
Proof. The function 𝑓(𝑆) is equivalent to

𝑓(𝑆) =
∑

𝑖∈𝑆∩𝐹

𝑐𝑖 +
∑

𝑖∈𝑆∩𝑂

𝑏𝑖 + 𝜆

𝑛∑
𝑘=1

ℎ

⎛
⎝ ∑

𝑗∈𝑆∩𝐹

𝜔𝑘𝑗(Δ𝑄𝑗)

+
∑

𝑗∈𝑆∩𝑂

𝜔𝑘𝑗(Δ𝑄𝑗)− 𝑉 ∗
𝑘

⎞
⎠

=
∑

𝑖∈𝑆∩𝐹

𝑐𝑖 +
∑

𝑖∈𝑆∩𝑂

𝑏𝑖 + 𝜆

𝑛∑
𝑘=1

ℎ

⎛
⎝ ∑

𝑗∈𝑆∩𝐹

𝜔𝑘𝑗(Δ𝑄𝑗)

−
∑

𝑗∈𝑂∖𝑆
𝜔𝑘𝑗 ∣Δ𝑄𝑗 ∣ − 𝑉 ∗

𝑘

⎞
⎠ .

The set 𝑆 ∩ 𝐹 is equal to 𝑂′ ∖𝑂, while the set 𝑆 ∩𝑂 is
equal to 𝑂 ∖𝑂′. Similarly, 𝑂′ = (𝑆 ∩ 𝐹 ) ∪ (𝑂 ∖ 𝑆), and
hence

𝑓(𝑆) =
∑

𝑖∈𝑂′∖𝑂
𝑐𝑖 +

∑
𝑖∈𝑂∖𝑂′

𝑏𝑖

+𝜆

𝑛∑
𝑘=1

ℎ

⎛
⎝∑

𝑗∈𝑂′
𝜔𝑘𝑗 ∣Δ𝑄𝑗 ∣ − 𝑉 ∗

𝑘

⎞
⎠

= 𝑓(𝑂′),

completing the proof.

The problem of selecting a set of buses to inject reac-
tive power can then be formulated as either
min {𝑓(𝑆) : 𝑆 ⊆ Ω} or min {𝑓(𝑂′) : 𝑂′ ⊆ Ω}. These are
both combinatorial optimization problems, and hence
cannot be efficiently solved or approximated unless the
objective function possesses additional structure, such
as submodularity. While neither 𝑓(𝑆) nor 𝑓(𝑂′) is su-
permodular (unless under certain conditions on the power
system state; see Section 4.4), an equivalent submodu-
lar objective function can still be derived, as shown in
the following section.

4.2 Submodular Optimization Approach
As a first step, we give an equivalent problem formu-

lation with an expanded ground set. We then demon-
strate that this problem has the structure of submodular
maximization with a matroid basis constraint.



Define the extended ground set Ω by

Ω = {𝑣𝑖𝑗 : 𝑖 ∈ Ω, 𝑗 = 0, 1}.
Here 𝑣𝑖0 can be viewed as the event that the capaci-
tor/reactor bank at bus 𝑖 ∈ Ω is switched off, while 𝑣𝑖1
is the event that the capacitor/reactor bank at bus 𝑖 is
switched on. For each bus 𝑖, let 𝑃𝑖 = {𝑗 ∈ Ω : 𝜔𝑖𝑗 > 0}
and 𝑅𝑖 = {𝑗 ∈ Ω : 𝜔𝑖𝑗 < 0}, i.e., the set of buses where
an injection of reactive power causes an increase (𝑃𝑖) or
decrease (𝑅𝑖) in voltage at bus 𝑖. Finally, for any set
𝐴 ⊆ Ω, define sets 𝐴0 and 𝐴1 by

𝐴0 = {𝑖 ∈ Ω : 𝑣𝑖0 ∈ 𝐴}, 𝐴1 = {𝑖 ∈ Ω : 𝑣𝑖1 ∈ 𝐴}.
For each bus 𝑖, let the function 𝑓𝑖 : 2

Ω → ℝ be defined
by

𝑓𝑖(𝐴) = ℎ

⎛
⎝ ∑

𝑗∈𝑃𝑖∩𝐴1

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣

+
∑

𝑗∈𝑅𝑖∩𝐴0

∣𝜔𝑖𝑗 ∣∣Δ𝑄𝑗 ∣ − 𝑉𝑖

⎞
⎠ ,

where 𝑉𝑖 = 𝑉 ∗
𝑖 −

∑
𝑗∈𝑅𝑖

𝜔𝑖𝑗 ∣Δ𝑄∣𝑗 . Define a system-wide
cost function by

𝑓(𝐴) = 𝜆
∑
𝑖∈Ω

𝑓𝑖(𝐴) +
∑

𝑖∈𝐴0∩𝑂

𝑏𝑖 +
∑

𝑖∈𝐴1∩𝐹

𝑐𝑖.

The following lemma establishes the equivalence between
this cost function and the objective function of the pre-
vious subsection.

Lemma 4. Suppose that the set 𝐴 ⊆ Ω satisfies ∣𝐴 ∩
{𝑣𝑖0, 𝑣𝑖1}∣ = 1 for all 𝑖 ∈ Ω. Then 𝑓(𝐴) = 𝑓(𝐴1).

Proof. First, by definition∑
𝑖∈𝐴1∖𝑂

𝑐𝑖 +
∑

𝑖∈𝑂∖𝐴1

𝑏𝑖 =
∑

𝑖∈𝐴1∖𝑂
𝑐𝑖 +

∑
𝑖∈𝐴0∩𝑂

𝑏𝑖.

Hence, it suffices to show that, for each 𝑖 ∈ Ω,

𝑓𝑖(𝐴) = ℎ

⎛
⎝∑

𝑗∈𝐴1

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣ − 𝑉 ∗
𝑖

⎞
⎠

when the condition ∣𝐴∩{𝑣𝑖0, 𝑣𝑖1}∣ = 1 holds for all 𝑖 ∈ Ω.
We have∑

𝑗∈𝐴1

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣ (11)

=
∑

𝑗∈𝐴1∩𝑃𝑖

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣+
∑

𝑗∈𝐴1∩𝑅𝑖

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣ (12)

=
∑

𝑗∈𝐴1∩𝑃𝑖

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣+
∑
𝑗∈𝑅𝑖

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣ (13)

−
∑

𝑗∈𝑅𝑖∩𝐴0

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣,

where (13) follows from the fact that, under the assump-
tion on 𝐴, Ω = 𝐴0 ∪ 𝐴1 is a partition of the set Ω,
and hence 𝑅𝑖 = (𝑅𝑖 ∩ 𝐴0) ∪ (𝑅𝑖 ∩ 𝐴1) and 𝑅𝑖 ∩ 𝐴1 =
𝑅𝑖 ∖ (𝑅𝑖 ∩𝐴0). Then

ℎ

⎛
⎝∑

𝑗∈𝐴1

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣ − 𝑉 ∗
𝑖

⎞
⎠

= ℎ

⎛
⎝ ∑

𝑗∈𝐴1∩𝑃𝑖

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣+
∑

𝑗∈𝐴0∩𝑅𝑖

∣𝜔𝑖𝑗 ∣∣Δ𝑄𝑗 ∣

−
⎡
⎣𝑉 ∗

𝑖 −
∑
𝑗∈𝑅𝑖

𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣
⎤
⎦
⎞
⎠ = 𝑓𝑖(𝐴),

as desired.

Define a collection ℬ of subsets of Ω by 𝐴 ∈ ℬ iff ∣𝐴 ∩
{𝑣𝑖0, 𝑣𝑖1}∣ = 1 for all 𝑖 ∈ Ω. By Lemma 4, the problem
of selecting a set of buses to inject reactive power is
equivalent to

min {𝑓(𝐴) : 𝐴 ∈ ℬ}. (14)

Our approach in constructing approximation algorithms
is to prove that (14) consists of minimizing a supermod-
ular objective function subject to a matroid basis con-
straint.

Lemma 5. There exists a matroidℳ such that 𝐴 ∈ ℬ
iff 𝐴 is a basis ofℳ.

Proof. Define Ω𝑖 = {𝑣𝑖0, 𝑣𝑖1}. The sets Ω1, . . . ,Ω𝑛

form a partition of Ω, and hence the constraint 𝐴 ∈ℳ
iff ∣𝐴∩Ω𝑖∣ ≤ 1 defines a partition matroidℳ by Lemma
2. Furthermore, the bases ofℳ are the sets 𝐴 satisfying
∣𝐴 ∩ Ω𝑖∣ = 1, which are exactly the sets in ℬ.

It remains to show supermodularity of 𝑓(𝐴), which is
established by the following theorem.

Theorem 1. The function 𝑓(𝐴) is supermodular as
a function of 𝐴.

Proof. The approach of the proof is to show a more
general result, namely, that any function 𝑔(𝐴) defined
by

𝑔(𝐴) = ℎ

(∑
𝑖∈𝐴

𝛼𝑖 − 𝛽

)
,

where 𝛼𝑖 ≥ 0 and 𝛽 ∈ ℝ, is supermodular as a function
of 𝐴. Define

𝜌 =

∑
𝑖∈𝐴∖𝐵 𝛼𝑖∑
𝑖∈𝐴Δ𝐵 𝛼𝑖

,

where Δ is the symmetric difference operator. Since all



𝛼𝑖’s are nonnegative, 𝜌 ∈ [0, 1]. We have∑
𝑖∈𝐴

𝛼𝑖 = 𝜌
∑

𝑖∈𝐴∪𝐵

𝛼𝑖 + (1− 𝜌)
∑

𝑖∈𝐴∩𝐵

𝛼𝑖

∑
𝑖∈𝐵

𝛼𝑖 = (1− 𝜌)
∑

𝑖∈𝐴∪𝐵

𝛼𝑖 + 𝜌
∑

𝑖∈𝐴∩𝐵

𝛼𝑖

Hence, by convexity,

𝑔(𝐴) + 𝑔(𝐵)

= ℎ

(∑
𝑖∈𝐴

𝛼𝑖 − 𝛽

)
+ ℎ

(∑
𝑖∈𝐵

𝛼𝑖

)

= ℎ

(
𝜌

( ∑
𝑖∈𝐴∪𝐵

𝛼𝑖 − 𝛽

)
+ (1− 𝜌)

( ∑
𝑖∈𝐴∩𝐵

𝛼𝑖 − 𝛽

))

+ℎ

(
(1− 𝜌)

( ∑
𝑖∈𝐴∪𝐵

𝛼𝑖 − 𝛽

)
+ 𝜌

( ∑
𝑖∈𝐴∩𝐵

𝛼𝑖 − 𝛽

))

≤ 𝜌ℎ

( ∑
𝑖∈𝐴∪𝐵

𝛼𝑖 − 𝛽

)
+ (1− 𝜌)ℎ

( ∑
𝑖∈𝐴∩𝐵

𝛼𝑖 − 𝛽

)

+(1− 𝜌)ℎ

( ∑
𝑖∈𝐴∪𝐵

𝛼𝑖 − 𝛽

)
+ 𝜌ℎ

( ∑
𝑖∈𝐴∩𝐵

𝛼𝑖 − 𝛽

)

= 𝑔(𝐴 ∪𝐵) + 𝑔(𝐴 ∩𝐵),

establishing supermodularity of 𝑔.
Since the function 𝑓𝑖(𝐴) can be obtained from 𝑔(𝐴)

by setting 𝛼𝑗 = ∣𝜔𝑖𝑗 ∣(Δ𝑄𝑗) and 𝛽 = 𝑉𝑖, each 𝑓𝑖(𝐴) is
supermodular. The terms∑

𝑖∈𝐴1∖𝑂
𝑐𝑖 +

∑
𝑖∈𝐴0∩𝑂

𝑏𝑖

can also be shown to be supermodular. The function
𝑓(𝐴) is therefore a sum of supermodular functions, and
hence is supermodular.

Combining Theorem 1 with the above discussion of
ℬ, we have that Eq. (14) is a supermodular minimiza-
tion problem, which can be transformed to an equiv-
alent submodular maximization problem, subject to a
matroid basis constraint.

4.3 Voltage Control Algorithm
The supermodular structure of Eq. (14) implies that

there exists a polynomial-time algorithm to approxi-
mately solve (14) up to a worst-case optimality bound
of 1/6 [10]. In what follows, we present a simplified
algorithm that, under a mild assumption motivated by
the physical properties of the power system, achieves an
improved optimality bound of 1/3.
The algorithm proceeds as follows. Let 𝜖 > 0 be a

constant parameter. The set 𝐴 is initialized to be equal
to the current configuration of capacitor/reactor banks,
so that 𝐴 = {𝑣𝑖0 : 𝑖 ∈ 𝐹} ∪ {𝑣𝑖1 : 𝑖 ∈ 𝑂}. At each

iteration, the algorithm selects a bus 𝑖 ∈ Ω such that

𝑓(𝐴 ∖ {𝑣𝑖0} ∪ {𝑣𝑖1}) < (1− 𝜖)𝑓(𝐴),

if 𝑣𝑖0 ∈ 𝐴 or

𝑓(𝐴 ∖ {𝑣𝑖1} ∪ {𝑣𝑖0}) < (1− 𝜖)𝑓(𝐴)

if 𝑣𝑖1 ∈ 𝐴. The algorithm terminates when no such bus
𝑖 can be found. A pseudocode description is given as
Algorithm 1.
Intuitively, at each iteration, the algorithm identifies a

bus 𝑖 ∈ Ω such that toggling its capacitor/reactor bank
from off to on (or from on to off) will reduce the cost

function 𝑓(𝐴).

Algorithm 1 Algorithm for selecting a set of buses to
inject reactive power.

1: procedure Submodular VC(𝝎, q, b, c, 𝑂, 𝐹 )
2: Input: Weights 𝜔𝑖𝑗 from inverse Jacobian 𝐽−1,

possible reactive power injections at each bus q
3: Switching costs b and c
4: Set of buses 𝑂 initially injecting reactive power,

𝐹 = Ω ∖𝑂.
5: Output: Set of buses 𝑆 to inject reactive power.
6: Initialization: 𝐴 ← {𝑣𝑖0 : 𝑖 ∈ 𝐹} ∪ {𝑣𝑖1 : 𝑖 ∈

𝑂}, 𝐴0 ← 𝐹 , 𝐴1 ← 𝑂
7: while 1 do
8: if there exists 𝑖 ∈ 𝐴0 with 𝑓(𝐴 ∖ {𝑣𝑖0} ∪
{𝑣𝑖1}) < (1− 𝜖)𝑓(𝐴) then

9: 𝐴← 𝐴 ∖ {𝑣𝑖0} ∪ {𝑣𝑖1}
10: 𝐴1 ← 𝐴1 ∪ {𝑖}, 𝐴0 ← 𝐴0 ∖ {𝑖}
11: else if there exists 𝑖 ∈ 𝐴1 with 𝑓(𝐴 ∖ {𝑣𝑖1}∪
{𝑣𝑖0}) < (1− 𝜖)𝑓(𝐴) then

12: 𝐴← 𝐴 ∖ {𝑣𝑖1 ∪ {𝑣𝑖0}
13: 𝐴0 ← 𝐴0 ∪ {𝑖}, 𝐴1 ← 𝐴1 ∖ {𝑖}
14: else
15: break
16: end if
17: end while
18: 𝑆 ← 𝐴1, return 𝑆
19: end procedure

We now analyze the optimality bounds guaranteed by
Algorithm 1. By construction, the algorithm converges
to a 𝜖-local minimum, defined as a set 𝐴 satisfying (1−
𝜖)𝑓(𝐴) < 𝑓(𝐴 ∪ {𝑣} ∖ {𝑤}) for any 𝑣 and 𝑤 such that
(𝐴∪{𝑣} ∖ {𝑤}) ∈ ℬ. The goal of the analysis is to show
that the cost at the local minimum is within a provable
bound of the globally minimal cost. As a first step, we
state the following assumption.

Assumption 1. If 𝐴 is a 𝜖-local optimum of the func-
tion 𝑓(𝐴), then 𝑓(𝐴) < 𝑓(Ω ∖𝐴).



Assumption 1 states that, at any local optimum of
𝑓(𝐴), the total cost is less than the cost that would be
achieved by switching all capacitors that are off in con-
figuration 𝐴 to be on, and vice versa. We justify this
assumption by noting that making this switch would
likely involve reducing reactive power near buses that
are currently below their desired voltages, while inject-
ing reactive power at buses that are already above their
desired voltages. Furthermore, the configuration repre-
sented by Ω∖𝐴 would likely incur a significant switching
cost.
Under this assumption, we have the following opti-

mality result.

Theorem 2. Let 𝑀 satisfy 𝑓(𝐴) ≤𝑀 for all 𝐴 ⊆ Ω.
Define 𝑆 to be the set chosen by Algorithm 1, and let 𝑆∗

be the optimal solution to min {𝑓(𝑆) : 𝑆 ⊆ Ω}. Then

𝑀 − 𝑓(𝑆) ≥
(

1

3 + 𝜖

)
(𝑀 − 𝑓(𝑆∗)). (15)

Proof. Let 𝐴∗ = {𝑣𝑖0 : 𝑖 /∈ 𝑆∗} ∪ {𝑣𝑖1 : 𝑖 ∈ 𝑆∗}
and 𝐴 = {𝑣𝑖0 : 𝑖 /∈ 𝑆} ∪ {𝑣𝑖1 : 𝑖 ∈ 𝑆}. Define a function

𝑔(𝐴) = 𝑀−𝑓(𝐴), so that 𝑔 is a nonnegative submodular
function. By Lemma 1,

(2 + 𝜖)𝑔(𝐴) ≥ 𝑔(𝐴 ∪𝐴∗) + 𝑔(𝐴 ∩𝐴∗).

Applying Assumption 1 yields

(3 + 𝜖)𝑔(𝐴) ≥ 𝑔(𝐴 ∪𝐴∗) + 𝑔(Ω ∖𝐴) + 𝑔(𝐴 ∩𝐴∗). (16)

By submodularity and nonnegativity of 𝑔, we have

𝑔(𝐴 ∪𝐴∗) + 𝑔(Ω ∖𝐴)
≥ 𝑔(𝐴𝑐 ∩ (𝐴 ∪𝐴∗)) + 𝑔(𝐴𝑐 ∪ (𝐴 ∪𝐴∗))
= 𝑔(Ω) + 𝑔(𝐴∗ ∖𝐴) ≥ 𝑔(𝐴∗ ∖𝐴).

Applying this inequality to (16) yields

(3 + 𝜖)𝑔(𝐴) ≥ 𝑔(𝐴∗ ∖𝐴) + 𝑔(𝐴 ∩𝐴∗)
≥ 𝑔(𝐴∗) + 𝑔(∅) ≥ 𝑔(𝐴∗)

by submodularity of 𝑔. Substitution of the definition of
𝑔 then gives (15).

4.4 Voltage Control Under Heavy Loading
Under certain operating conditions, the function 𝑓(𝑂′)

defined in Section 4.1 possesses additional structure that
can be exploited to improve the optimality bounds and
remove the necessity of Assumption 1. In this subsec-
tion, we consider the case where the inequality

2𝑉𝑖 ≥ (𝑉𝑖 + 𝑉𝑗) cos 𝜃𝑖𝑗 (17)

holds at all neighboring buses 𝑖 and 𝑗. This condition
holds under heavy loading conditions, when 𝑉𝑖 and 𝑉𝑗
are within their normal range (between 0.95 and 1.05
pu) and 𝜃𝑖𝑗 is greater than 13 degrees due to real power

flows between buses. The properties of the inverse Ja-
cobian matrix under this heavy loading condition are
described in the following lemma.

Lemma 6. If Eq. (17) holds and ∣𝜃𝑖 − 𝜃𝑗 ∣ < 𝜋
2 at all

neighboring buses 𝑖 and 𝑗, then all entries of 𝐽−1 are
nonnegative.

Proof. Recall that an M-matrix is a matrix with
non-positive off diagonal entries and whose eigenvalues
have positive real parts. Since the inverse of an M-
matrix is nonnegative, it suffices to show that the Jaco-
bian is an M-matrix when (17) holds. First, note that
the off-diagonal entries are given by

𝐽𝑖𝑗 = −𝑉𝑖𝐵𝑖𝑗 cos 𝜃𝑖𝑗 < 0

for each pair of neighboring buses.
By the Gershgorin Circle Theorem, a sufficient condi-

tion for positivity of the eigenvalues is that the matrix
columns are diagonally dominant, or equivalently,∑
𝑗∈𝑁(𝑖)

2𝑉𝑖𝐵𝑖𝑗 −𝐵𝑖𝑗𝑉𝑗 cos 𝜃𝑖𝑗 −
∑

𝑗∈𝑁(𝑖)

𝐵𝑖𝑗𝑉𝑖 cos 𝜃𝑖𝑗 > 0.

If Eq. (17) holds, then each term of the summation is
positive, completing the proof.

Lemma 6 provides needed additional structure to show
that the metric 𝑓(𝑂′) is supermodular as a function of
𝑂′.

Proposition 1. If (17) holds and cos 𝜃𝑖𝑗 <
𝜋
2 at all

neighboring buses 𝑖 and 𝑗, then the function 𝑓(𝑂′) is
supermodular as a function of 𝑂′.

Proof. From the proof of Theorem 1, we have that
the function

𝑔(𝐴) = ℎ

⎛
⎝∑

𝑗∈𝐴

𝛼𝑗 − 𝛽

⎞
⎠

is supermodular when 𝛼𝑖 ≥ 0 for all 𝑖. Letting 𝛼𝑗 =
𝜔𝑖𝑗 ∣Δ𝑄𝑗 ∣, we have that 𝑓 can be written as a sum of
functions of this form, where nonnegativity is guaran-
teed by Lemma 6. Hence 𝑓(𝑂′) is supermodular.

Supermodularity of 𝑂′ eliminates the need for the ma-
troid basis constraint in (14), and implies that

min {𝑓(𝑂′) : 𝑂′ ⊆ Ω}
consists of unconstrained minimization of a supermodu-
lar objective function. Removing the matroid constraint
enables an optimality bound of 1/2, without the need
for Assumption 1, using a randomized greedy algorithm.
The randomized greedy algorithm is described as Algo-
rithm 2 [1].



Algorithm 2 Selecting a set of buses for voltage control
under heavy loading.

1: procedure VC Heavy(𝝎, q, b, c, 𝑂, 𝐹 )
2: Input: Weights 𝜔𝑖𝑗 from inverse Jacobian 𝐽−1,

possible reactive power injections at each bus q
3: Switching costs b and c
4: Set of buses 𝑂 initially injecting reactive power,

𝐹 = Ω ∖𝑂.
5: Output: Set of buses 𝑆 to inject reactive power.
6: Initialization: 𝑈0 ← ∅, 𝑉0 ← Ω
7: for 𝑖 = 1, . . . , 𝑛 do
8: 𝜇𝑖 ← 𝑓(𝑈𝑖−1 ∪ {𝑖})− 𝑓(𝑈𝑖−1)
9: 𝜈𝑖 ← 𝑓(𝑉𝑖−1 ∖ {𝑖})− 𝑓(𝑉𝑖−1)
10: 𝜇′

𝑖 ← max {𝜇𝑖, 0}, 𝜈′𝑖 ← max {𝜈𝑖, 0}
11: 𝑟 ← 0 with probability

𝜇′
𝑖

𝜇′
𝑖+𝜈′

𝑖
, 𝑟 ← 1 else

12: if 𝑟 == 0 then
13: 𝑈𝑖 ← 𝑈𝑖−1 ∪ {𝑖}, 𝑉𝑖 ← 𝑉𝑖−1

14: else
15: 𝑈𝑖 ← 𝑈𝑖−1, 𝑉𝑖 ← 𝑉𝑖−1 ∖ {𝑖}
16: end if
17: end for
18: 𝑆 ← 𝑈𝑛, return 𝑆
19: end procedure

Lemma 7. Let 𝑂̂ denote the set chosen by Algorithm
2, and let 𝑂∗ = argmin {𝑓(𝑂′) : 𝑂′ ⊆ Ω}. Let 𝑀 be an
upper bound on 𝑓(𝑂′) for all 𝑂′ ⊆ Ω. Then

𝑀 − 𝑓(𝑂̂) ≥ 1

2
(𝑀 − 𝑓(𝑂∗).

The lemma is a special case of [1, Lemma 3.1].

4.5 Complexity Analysis and Comparison
We now discuss the complexity of our approach and

compare with the current state of the art [14]. The
complexity of Algorithm 1 is described by the following
proposition.

Proposition 2. Let 𝑓𝑚𝑖𝑛 = min {𝑓(𝑆) : 𝑆 ⊆ Ω} and
𝑓𝑚𝑎𝑥 = max {𝑓(𝑆) : 𝑆 ⊆ Ω}. The runtime of the algo-
rithm is bounded above by 𝑂(𝑛𝑇0), where

𝑇0 =
⌈ log [ 𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥

]
log (1− 𝜖)

⌉
.

Proof. Let 𝑆𝑖 denote the set 𝑆 after 𝑖 iterations of
the algorithm. By construction, 𝑓(𝑆𝑖) < (1− 𝜖)𝑓(𝑆𝑖−1),
and hence 𝑓(𝑆𝑖) < (1 − 𝜖)𝑖𝑓(𝑆0). Let 𝑇 denote the
number of iterations before the algorithm terminates.
By definition,

𝑓𝑚𝑖𝑛 ≤ 𝑓(𝑆𝑇 ) < (1− 𝜖)𝑇 𝑓(𝑆0) ≤ (1− 𝜖)𝑇 𝑓𝑚𝑎𝑥.

Rearranging terms yields 𝑇 ≤ 𝑇0. Each iteration re-
quires at most 𝑛 evaluations of the objective function

𝑓(𝑆) in order to identify a bus to activate or deactivate
its capacitor/reactor bank, implying that the computa-
tion is 𝑂(𝑛𝑇0) in the worst case.

Our Algorithm 2 provides lower linear computational
complexity in the number of buses (𝑂(𝑛)) by inspec-
tion. For comparison, the approach of [14] is based
on enumerating all possible control actions until an ac-
tion is found that resolves any voltage instability. The
number of such actions, denoted 𝑚 = 2𝑘, will satisfy
𝑚 ≪ 2𝑛. If actions are sampled uniformly at random,
the expected complexity is 𝑂(2𝑛/2𝑘) = 𝑂(2𝑛−𝑘), which
is significantly larger than the linear complexity pro-
vided by Algorithms 1 and 2.

5. NUMERICAL STUDY
This section presents simulation results for our pro-

posed submodular approach to voltage control. The sys-
tem topology, bus angles, and line reactances are from
the IEEE 30-bus test data. Initial voltages are varied
around the reference value vref = 1 p.u. The accept-
able voltage range is defined as (0.95,1.05) p.u., while
the desired voltage range is set to be (0.98, 1.02) p.u.
The parameter 𝜖 = 0 from Algorithm 1.
In our simulation, we assume each bus is a PQ bus

with a capacitor bank ready to switch on/off. We set
the possible reactive power injection Δ𝑄 at each bus
to be 0.005 p.u. In most cases, we choose the trade-off
factor 𝜆 ≥ 5 to emphasize the penalty cost of voltage
violation. For switching costs at bus 𝑖, we set 𝑏𝑖 = 1 and
𝑐𝑖 = 1 for switching capacitor/reactor banks off and on
respectively.
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Figure 1: Convex penalty function ℎ(𝑥) for volt-
age deviation.

The convex penalty function is defined as

ℎ(𝑥) =

⎧⎨
⎩

𝛼(𝑥− 𝑉𝑚𝑎𝑥)
4, 𝑥 > 𝑉𝑚𝑎𝑥

0, 𝑉𝑚𝑖𝑛 < 𝑥 ≤ 𝑉𝑚𝑎𝑥

𝛽(𝑥− 𝑉𝑚𝑖𝑛)
4, 𝑥 ≤ 𝑉𝑚𝑖𝑛

where 𝑉𝑚𝑖𝑛 and 𝑉𝑚𝑎𝑥 are the lower and upper bounds
on the desired voltage region (Figure 1).
To evaluate our approach, we considered two test cases,

namely, voltage control under normal operating condi-
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Figure 2: Simulation study of our proposed submodular optimization approach for voltage control.
(a) IEEE 30 bus network topology considered in this study. Circled buses have initial voltages that
are below the normal operating range. Squared buses are selected by our algorithm to inject reactive
power. (b) Change in voltage due to reactive power injections. The reactive power injections are
sufficient to drive deviating buses to their normal operating regions. (c) Comparison of time required
to compute the optimal voltage control strategy for submodular approach and the current state of
the art. The existing approach requires significantly greater computation overhead as the switching
cost per bus increases.

tions and voltage control when one or more buses de-
viate from their desired voltages. We first considered
voltage control when all buses are within the normal
operating region of (0.95, 1.05) p.u., but some buses de-
viate from the desired range of (0.98, 1.02) p.u. The pa-
rameter 𝜆 = 10 for this case, and no capacitor/reactor
banks were assumed to be active. The submodular op-
timization approach recommended switching six capaci-
tor banks from off to on, thus reducing the total voltage
deviation from 4.563 to 0.7805. The maximum devia-
tion of any bus from the desired voltage was reduced
from 0.5 to 0.4.
We next consider the case where one or more volt-

ages are deviating from their normal operating ranges.
As shown in Figure 2(a), buses 7, 26, and 30 have
voltages that drop to 0.9 p.u., which must be miti-
gated through reactive power injection. Initially, the
set 𝑂 = ∅. The submodular control approach selected
buses {1, 3, 4, 5, 6, 7} to inject reactive power in order
to restore the overall system voltage. We observe that,
while buses 26 and 30 experienced lower voltages, they
were not selected to inject reactive power. For this test
case, there were sufficiently few reactive power losses
between the selected buses and the low-voltage buses to
enable a return to voltage stability. At the same time,
the chosen set of actions ensured that the voltages of
the remaining buses did not rise above their desired op-
erating region.
The impact of the chosen control action is shown in

Figure 2(b). The minimum voltage of any bus increased
from 0.9 to 0.94, so that all voltages are close to the
desired operating region, while the maximum voltage

of 1.05 is within the desired limits. The total voltage
deviation was reduced from 154 to 12.
A comparison between the submodular approach to

voltage control and the exhaustive search approach [14]
is shown in Figure 2(c). Our implementation of the ex-
haustive search first computes the objective function for
control actions at a single bus, followed by all control
actions involving two buses, and so on. The number of
computations of the objective function to select a volt-
age control strategy that achieves a local minimum of
the objective function 𝑓(𝑆) is shown. As the trade-off
parameter 𝜆 increases, the number of buses that inject
reactive power at the local optimum increases. This
leads to a corresponding increase in the search space,
and hence the complexity, of the exhaustive search algo-
rithm. The execution time of the submodular approach,
however, does not depend on the system parameters.

6. CONCLUSIONS AND FUTURE WORK
We considered the problem of voltage control in power

systems. Current approaches to voltage control rely on
enumerating possible control actions across all buses,
and hence are computationally intensive and may lead
to inefficient voltage control strategies with large switch-
ing costs. In this paper, we formulated a discrete op-
timization problem of selecting a subset of buses to
inject reactive power (e.g., through activating capaci-
tor/reactor banks or transformer tap changes) in order
to minimize the deviation from the desired voltage and
switching costs. Our main contribution was to prove
that this joint cost function is supermodular as a func-



tion of the set of buses that inject reactive power.
We demonstrated that the voltage control problem is

equivalent to submodular maximization with a matroid
basis constraint, leading to efficient approximation al-
gorithms with provable optimality bounds. These al-
gorithms enable selection of control actions with less
computation than current approaches that enumerate
all control actions. This reduced complexity enables
searching for control strategies that minimize switching
costs in addition to preventing voltage instability. Eval-
uation of the submodular algorithms on larger power
systems will be studied in our future work.
Injecting reactive power at load buses is the stan-

dard approach to ensuring voltage stability. Demand
response mechanisms that are being deployed in the fu-
ture smart grid provide an additional method of voltage
control by reducing reactive power demand. Our future
work will focus on scalable and effective voltage control
through demand response, as well as joint considera-
tion of demand response and traditional reactive power
injection. We will also investigate efficient distributed
algorithms that can be implemented at the individual
buses.
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